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Abstract

The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated.
Special attention is devoted to the response in frequency ranges with gaps in the band structure for the
corresponding infinite periodic lattice. The effects of boundaries, viscous damping, and imperfections are
studied by analyzing two examples; a 1-D filter and a 2-D wave guide. In 1-D the structural response in the
band gap is shown to be insensitive to damping and small imperfections. In 2-D the similar effect of
damping is noted for one type of periodic structure, whereas for another type the band gap effect is nearly
eliminated by damping. In both 1-D and 2-D it is demonstrated how the free structural boundaries affect
the response in the band gap due to local resonances. Finally, 2-D wave guides are considered by replacing
the periodic structure with a homogeneous structure in a straight and a 901 bent path, and it is shown how
the vibrational response is confined to the paths in the band gap frequency ranges.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the last decade the interest in photonic band gap crystals has been great. Periodic structures
of two materials with different di-electric properties may exhibit stop bands in the band structure
where light waves cannot propagate—thus, photonic crystals can be constructed that effectively
inhibit light at certain frequencies to be transmitted through them. Numerous research papers
have appeared on the subject, see e.g., Refs. [1,2] and possible industrial applications have
emerged such as e.g., wave guides, antennas, and lasers.
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The work on photonic band gaps has led to a renewed interest in elastic wave propagation in
periodic materials and especially the existence of the so-called phononic band gaps—i.e., stop
bands in the band structure for propagation of elastic waves. However, the existence of frequency
ranges where propagating wave solutions do not exist has already been demonstrated by Rayleigh
[3]. Comprehensive reviews of earlier work on wave propagation and band gaps in periodic
structures can be found in Refs. [4–6]. New research has focussed on theoretical predictions as
well as experimental documentation of gaps in the band structure. Studies of periodic structures in
one dimension include the experimental and theoretical analysis of string–mass chains [7],
microtapered optical fibers [8], and theoretical work on band structures in locally periodic media
governed by the wave equation [9]. In 2- and 3-D periodic structures gaps in the elastic band
structure have been predicted using a variety of computational methods such as plane-wave
expansion e.g., Refs. [10,11], finite elements (FEM) e.g., Refs. [12,13], the multiple scattering-
theory (MST) e.g., Refs. [14,15], and a related Rayleigh method [16]. An extensive review of newer
research in band structures of periodic materials can be found in Ref. [17], and frequently updated
reference lists on phononic and photonic band gaps can be found at http://www.pbglink.com.
Unlike e.g., photonic crystals to the author’s knowledge no direct applications of phononic

band gap structures and materials have appeared. Little work has been published on analyzing the
behavior of band gap materials in engineering structures, where the effects of the finite dimension,
boundaries, damping, and imperfections must be addressed. Two recent exceptions are the studies
of surface states and localization phenomena in periodic structures with defects [18,19]. It is the
aim of this work to add knowledge that can be exploited in the development towards future
applications. An extension of this work is the application of topology optimization techniques in
the design of materials and structures with phononic band gaps [20,21].
In this work simple mass–spring models are used to demonstrate the dynamical behavior of

periodic structures. The mass–spring models provide a convenient setting for the realization and
visualization of periodic structures, for including damping and imperfections, and qualitatively
they fully capture the phenomena involved. In Section 2 the mass–spring models of the unit cells
are presented. The unit cells describe the repetitive units in the periodic structure. Band structures
are calculated for the corresponding infinite lattices and for special cases approximate analytical
frequency bounds for the gaps are obtained. Two examples are then provided in Section 3 in order
to analyze the vibrational response of the periodic structures subjected to periodic loading in the
band gap frequency ranges.
The first example deals with a 1-D structure with filtering properties (Section 3.2). Two different

sizes of masses and springs are used in the structure, chosen so that it corresponds to a discrete
model of aluminum and PMMA (acrylplastic) with filtering of longitudinal waves. It is shown
how the response in the band gap frequency range depends on the number of unit cells in the
structure and also how the response in the band gap is insensitive to moderate amounts of viscous
damping and to small imperfections in the periodic structure.
The second example deals with a 2-D structure that can be utilized as a wave guide (Section

3.3). The structure is considered with two different types of unit cells, with masses and springs
chosen to make the lattice correspond to a structure with a stiff aluminum inclusion in an epoxy
matrix (type 1), or a heavy resonator of copper suspended in a flexible layer of silicone rubber in
an epoxy matrix (type 2). With type 1 unit cells the response in the band gap depends only weakly
on damping, whereas with type 2 unit cells damping almost eliminates the band gap effect. It is

ARTICLE IN PRESS

J.S. Jensen / Journal of Sound and Vibration 266 (2003) 1053–10781054



shown for 2-D, as well as for the 1-D example, how the presence of boundaries creates local
resonances that affect the response in the band gap. Finally, two wave guide structures are created
by replacing the periodic structure with a homogeneous structure in a straight and in a 901 bent
path. It is demonstrated how the vibrational response is confined to these paths when the
frequency of the periodic loading is within the band gap.

2. Model: the unit cell—infinite lattices

The periodic structures to be considered are made up of a finite number of identical unit cells.
These unit cells are the repetitive units that are used to describe the micro-structure (or material).
If the unit cells are inhomogeneous, i.e., made up of different masses and/or springs, the
corresponding structure is periodic, whereas with a homogeneous unit cell the structure is also
homogeneous.
In the following, dispersion relations are obtained for wave propagation in infinite periodic

lattices. Results are presented in form of band structures relating the frequency of the propagating
waves to the wavenumber or wavevector.

2.1. The one-dimensional case—longitudinal waves

Fig. 1a shows the 1-D unit cell. Within the cell N masses mj are connected by linear elastic
springs with stiffness coefficients kj: The small-amplitude displacement of the ðp þ jÞth mass is
governed by

mj .upþj ¼ kjðupþjþ1 � upþjÞ � kj�1ðupþj � upþj�1Þ; ð1Þ

where p is an arbitrary integer.
Wave propagation through an infinite number of connected unit cells is considered and thus a

travelling wave solution is assumed as

upþj ¼ Aje
iððpþjÞg�otÞ; ð2Þ
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Fig. 1. (a) The 1-D unit cell with N masses mj and springs kj ; and (b) the corresponding irreducible Brillouin zone

indicating the range of the wavenumber g evaluated when constructing the complete band structure from Eq. (8).
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where Aj is the wave amplitude, g the wavenumber, and o is the wave frequency. Inserting Eq. (2)
into Eq. (1) yields N linear complex equations

ðo2
j � o2ÞAj ¼ c2j e

igAjþ1 þ ðo2
j � c2j Þe

�igAj�1; j ¼ 1;y;N; ð3Þ

where the following non-dimensional parameters have been introduced:

o2
j ¼

kj þ kj�1

mj

; ð4Þ

c2j ¼
kj

mj

: ð5Þ

An infinite number of identical unit cells is considered and the following periodic boundary
conditions can thus be applied:

Aj�1 ¼ AN ; j ¼ 1; ð6Þ

Ajþ1 ¼ A1; j ¼ N: ð7Þ

Eq. (3) forms with Eqs. (6) and (7) a standard complex eigenvalue problem

ðSðgÞ � o2IÞA ¼ 0; ð8Þ

that can be solved to construct the band structure of wave frequencies o for known
wavenumber g:
It is not necessary to solve Eq. (8) for all values of g: Due to the periodicity all propagating

modes are captured by restricting the wavenumber to the irreducible Brillouin zone as shown in
Fig. 1b [4]. The two end points in the zone, gN ¼ 0 and p; correspond to the masses in two
neighboring unit cells moving in phase and in anti-phase, respectively.

2.1.1. Wave propagation for an inhomogeneous unit cell

As it is well known no gaps exist in the band structure for the homogeneous infinite lattice, i.e.,
waves of all frequencies are allowed to propagate. However, with an inhomogeneous unit cell gaps
emerge in the band structure for the corresponding periodic infinite lattice. An example of an
inhomogeneous unit cell is shown in Fig. 2a. This unit cell consists of four masses with the center
masses and springs representing a material with lower stiffness to mass ratio (lower wave speed).
For the four-mass system ðN ¼ 4Þ the masses and springs are chosen as

m1 ¼ m4 ¼ 3:98 kg;

m2 ¼ m3 ¼ 1:69 kg;

k1 ¼ k4 ¼ 70:9� 109 kg=s2;

k2 ¼ k3 ¼ 5:28� 109 kg=s2 ð9Þ

which makes the mass–spring system correspond to a discrete model of a 0:15 m rod with the
middle 50% of PMMA and the two ends of aluminum.1
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1Material data: Ealu ¼ 70:9 GPa; ralu ¼ 2830 kg=m3; Epmma ¼ 5:28 GPa; rpmma ¼ 1200 kg=m3:
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As shown in Fig. 2b three large gaps appear in the band structure for oE5:2–12.0, 13:5–26.6,
and 26:8–42:3 kHz: In these frequency ranges no waves can propagate through the infinite
periodic lattice. In Fig. 2c is shown a close-up of the lowest band gap including curves computed
for higher values of N (a finer discretization of the unit cell with the middle N=2 masses and
springs of PMMA). The band structure converges with increasing N towards the corresponding
continuum model, but as appears the simple model with N ¼ 4 gives a good estimation of the first
band gap. For the other gaps the difference between the simple model and the continuum model is
naturally larger.
The upper and lower frequency bounds for the first band gap can be accurately estimated by

considering a simplified system (Fig. 2d). For wave propagation in the first pass band the four
masses move in phase, corresponding to the fundamental mode of propagation. The first band
gap appears when gN ¼ p (Fig. 2a) for which the wave amplitude of one of the masses in the unit
cells vanishes. Fig. 2d shows the four possible system configurations with a single mass in the unit
cell fixed (replaced by a support in the figure). It is now possible to estimate the lower and upper
frequency bound of the band gap by identifying the lowest and highest fundamental
eigenfrequency for the four configurations. The system third from top in Fig. 2d has the lowest
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Fig. 2. (a) The unit cell with N ¼ 4 (sizes of masses and springs given in the text), (b) band structure for wave

propagation in the infinite periodic lattice, (c) close-up of the first gap including curves computed for N ¼ 16 and 64,

and (d) the four possible isolated systems with a single mass in the unit cells fixed.
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fundamental eigenfrequency o ¼ 5:2 kHz which matches the lower band gap frequency well, and
the system at the top has the highest fundamental eigenfrequency found as o ¼ 12:0 kHz giving a
good estimation of the upper band gap frequency.
In the band gaps, instead of propagating modes, solutions exist for purely imaginary

wavenumbers. Introducing the imaginary wavenumber g-ig into the solution form (2) yields

upþj ¼ Aje
�ðpþjÞge�iot ð10Þ

showing that the solution is a standing wave with an amplitude of vibration that is exponentially
decaying spatially.

2.2. The 2-D case—in-plane elastic waves

A 2-D unit cell is shown in Fig. 3a. Within the cell N � N masses are arranged in a square
configuration with each mass connected to eight neighboring masses with springs. The four
springs connected to the j; kth mass in the 01; 451; 901; and 1351 directions from the x-axis are
denoted kj;k;1; kj;k;2; kj;k;3; and kj;k;4:
The equations of motion governing the small-amplitude displacements of the ðp þ jÞ; ðq þ kÞth

mass in the x and y directions ðu; vÞ are given as:

mj;k .upþj;qþk ¼ kj;k;1ðupþjþ1;qþk � upþj;qþkÞ

þ 1
2

kj;k;2ðupþjþ1;qþkþ1 � upþj;qþk þ vpþjþ1;qþkþ1 � vpþj;qþkÞ

þ 1
2

kj;k;4ðupþj�1;qþkþ1 � upþj;qþk � vpþj�1;qþkþ1 þ vpþj;qþkÞ

þ kj�1;k;1ðupþj�1;qþk � upþj;qþkÞ

þ 1
2

kj�1;k�1;2ðupþj�1;qþk�1 � upþj;qþk þ vpþj�1;qþk�1 � vpþj;qþkÞ

þ 1
2

kjþ1;k�1;4ðupþjþ1;qþk�1 � upþj;qþk � vpþjþ1;qþk�1 þ vpþj;qþkÞ; ð11Þ
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Fig. 3. (a) The 2-D square unit cell with N � N masses and corresponding 4� N � N springs, and (b) the

corresponding irreducible Brillouin zone indicating the triangular path on which the wavevector g should be evaluated

in Eq. (21).
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mj;k .vpþj;qþk ¼ kj;k;3ðvpþj;qþkþ1 � vpþj;qþkÞ

þ 1
2

kj;k;2ðvpþjþ1;qþkþ1 � vpþj;qþk þ upþjþ1;qþkþ1 � upþj;qþkÞ

þ 1
2

kj;k;4ðvpþj�1;qþkþ1 � vpþj;qþk � upþj�1;qþkþ1 þ upþj;qþkÞ

þ kj;k�1;3ðvpþj;qþk�1 � vpþj;qþkÞ

þ 1
2

kj�1;k�1;2ðvpþj�1;qþk�1 � vpþj;qþk þ upþj�1;qþk�1 � upþj;qþkÞ

þ 1
2

kjþ1;k�1;4ðvpþjþ1;qþk�1 � vpþj;qþk � upþjþ1;qþk�1 þ upþj;qþkÞ; ð12Þ

where p and q are arbitrary.
As in the 1-D case a travelling wave solution is assumed in the infinite lattice

upþj;qþk ¼ Aj;ke
iððpþjÞgxþðqþkÞgy�otÞ; ð13Þ

vpþj;qþk ¼ Bj;ke
iððpþjÞgxþðqþkÞgy�otÞ; ð14Þ

where Aj;k and Bj;k are the wave amplitudes, o the wave frequency, and gx and gy are the two
components of the wavevector c:
With the following non-dimensional constants defined:

o2
x;j;k ¼

kj;k;1 þ kj�1;k;1 þ 1
2
ðkj;k;2 þ kj;k;4 þ kj�1;k�1;2 þ kjþ1;k�1;4Þ

mj;k
; ð15Þ

o2
y;j;k ¼

kj;k;3 þ kj;k�1;3 þ 1
2
ðkj;k;2 þ kj;k;4 þ kj�1;k�1;2 þ kjþ1;k�1;4Þ

mj;k
; ð16Þ

*kj;k ¼
1
2
ðkj;k;2 � kj;k;4 þ kj�1;k�1;2 � kjþ1;k�1;4Þ

mj;k
; ð17Þ

c2j;k ¼
kj;k

mj;k
; ð18Þ

Eqs. (11) and (12) become

ðo2
x;j;k � o2ÞAj;k þ *kj;kBj;k ¼ c2j;k;1e

igxAjþ1;k

þ 1
2

c2j;k;2ðe
iðgxþgyÞAjþ1;kþ1 þ eiðgxþgyÞBjþ1;kþ1Þ

þ 1
2 c2j;k;4ðe

iðgy�gxÞAj�1;kþ1 � eiðgy�gxÞBj�1;kþ1Þ

þ c2j�1;k;1e
�igxAj�1;k

þ 1
2

c2j�1;k�1;2ðe
�iðgxþgyÞAj�1;k�1 þ e�iðgxþgyÞBj�1;k�1Þ

þ 1
2

c2jþ1;k�1;4ðe
iðgx�gyÞAjþ1;k�1 � eiðgx�gyÞBjþ1;k�1Þ; ð19Þ
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ðo2
y;j;k � o2ÞBj;k þ *kj;kAj;k ¼ c2j;k;3e

igyBj;kþ1

þ 1
2

c2j;k;2ðe
iðgxþgyÞBjþ1;kþ1 þ eiðgxþgyÞAjþ1;kþ1Þ

þ 1
2

c2j;k;4ðe
iðgy�gxÞBj�1;kþ1 � eiðgy�gxÞAj�1;kþ1Þ

þ c2j;k�1;3e
�igyBj�1;k

þ 1
2

c2j�1;k�1;2ðe
�iðgxþgyÞBj�1;k�1 þ e�iðgxþgyÞÞAj�1;k�1

þ 1
2

c2jþ1;k�1;4ðe
iðgx�gyÞBjþ1;k�1 � eiðgx�gyÞAjþ1;k�1Þ ð20Þ

with periodic boundary conditions applied using a 2-D equivalent of Eqs. (6) and (7).
The corresponding eigenvalue problem is set up

ðSðgx; gyÞ � o2IÞA ¼ 0 ð21Þ

and solved for the wave frequency o for known wavevector components gx and gy: As in the 1-D
case it is not necessary to analyze Eq. (21) for all gx and gy: In Fig. 3b the irreducible Brillouin
zone in two dimensions is shown, [4], where the analysis can be restricted to the triangular zone if
the unit cell is square and symmetrical. Furthermore, it is only necessary to search the zone on the
exterior boundary, i.e., along the path G�X�M� G; since the extremums of the wave
frequencies are always found on the zone boundary.2

2.2.1. Band gaps for a stiff inclusion: type 1 unit cell

The homogeneous unit cell produces a band structure without gaps, as was also the case for the
1-D problem.
A unit cell with a band gap is shown in Fig. 4a with the corresponding band structure shown in

Fig. 4b. A cell with 5� 5 masses and connecting springs is chosen where the center 3� 3 masses
and corresponding springs represent a heavy and stiff inclusion and the remaining masses and
springs are the lighter and more flexible matrix material.
The values of masses and springs are

mmat ¼ 1:82� 10�2 kg;

minc ¼ 4:53� 10�2 kg;

kmat;1 ¼ kmat;3 ¼ 2� kmat;2 ¼ 2� kmat;4 ¼ 4:10� 109 kg=s2;

kinc;1 ¼ kinc;3 ¼ 2� kinc;2 ¼ 2� kinc;4 ¼ 70:9� 109 kg=s2: ð22Þ

The values in Eq. (22) are chosen so that the model corresponds to a 0:02 m� 0:02 m unit cell of
epoxy matrix with an aluminum inclusion. By choosing the springs k;2; and k;4 to be half the size
of the springs k;1; and k;3; as in Eq. (22), a good qualitative agreement is obtained between the
mass–spring model and a plane-strain 2-D continuum model of materials with the Poisson ratio
near n ¼ 0:3:
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the numerical examples presented in this paper this is indeed so.
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As appears from Fig. 4b a gap appears in the band structure for oE46:6–57:3 kHz between the
third and fourth bands. In this frequency range waves cannot propagate in the infinite lattice
regardless of the direction of propagation. The band gap calculated for this mass-spring unit cell
model corresponds qualitatively to the band gap found for the corresponding continuum model,
see e.g., Refs. [15,20].

2.2.2. Band gaps for a heavy resonator: type 2 unit cell
Alternatively, band gaps can be obtained in the lower frequency range by placing a heavy

inclusion in soft suspension with a surrounding matrix material. The heavy inclusion acts as a
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Fig. 4. (a) The 5� 5 mass–spring unit cell (denoted type 1) modelling a stiff inclusion (center 3� 3 masses and springs)

in a surrounding matrix, and (b) the corresponding band structure for wave propagation in the infinite periodic lattice

structure.
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local resonator and splits up the band structure. Recently, band gaps for such structures were
demonstrated in Refs. [14,22], with the former pointing out a possible application in noise
reduction due to the low band gap frequency range.
Fig. 5a shows the unit cell and the corresponding band structure is shown in Fig. 5b. The

masses and springs in the model have been chosen as

mmat ¼ 1:27� 10�2 kg;

minc ¼ 9:93� 10�2 kg;

kmat;1 ¼ kmat;3 ¼ 2� kmat;2 ¼ 2� kmat;4 ¼ 4:10� 109 kg=s2;

kinc;1 ¼ kinc;3 ¼ 2� kinc;2 ¼ 2� kinc;4 ¼ 118� 109 kg=s2;

ksusp;1 ¼ ksusp;3 ¼ 2� ksusp;2 ¼ 2� ksusp;4 ¼ 4:00� 106 kg=s2: ð23Þ

With the parameters in Eq. (23) the model corresponds to a 0:02 m� 0:02 m unit cell of an epoxy
matrix with a copper inclusion suspended in a thin massless layer of silicone rubber.3

The band gap frequency range can be accurately predicted. The local resonance of the heavy
inclusion in the soft suspension splits up the band structure and determines the lower bound for
the band gap

o1E

ffiffiffiffiffiffiffiffiffiffi
Ksusp

Minc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
7ksusp

4minc

s
E1:34 kHz: ð24Þ

The first possible propagation mode above the band gap is when the inclusion and the matrix
material can move essentially rigidly in anti-phase. With the matrix motion denoted x and the
motion of the inclusion y; the rigid motion is governed by the 2-d.o.f. system

Mmat .x ¼ Ksuspðy � xÞ; ð25Þ

Minc .y ¼ Ksuspðx � yÞ; ð26Þ

that yields the upper bound frequency

o2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KsuspðMinc þ MmatÞ

MincMmat

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ksuspð4minc þ 32mmatÞ

4minc32mmat

s
E1:88 kHz ð27Þ

as well as the ratio of amplitudes at the upper frequency bound

y

x
¼ 1� o2

2

Mmat

Ksusp

¼ �
Mmat

Minc

¼ �
32mmat

4minc

E� 1:02: ð28Þ

It is noted that the frequency bounds in Eqs. (24) and (27) correspond well to the gap frequencies
shown in the inset in Fig. 5b.
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3Material data: Eepo ¼ 4:1 GPa; repo ¼ 1140 kg=m3; Ecop ¼ 118 GPa; rcop ¼ 8940 kg=m3; Erub ¼ 4 MPa:
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3. Finite lattice structures

Wave propagation in infinite, undamped, periodic lattices was analyzed in Section 2. In this
section the behavior of finite periodic structures subjected to periodic loading is considered in
order to study the effects of boundaries, damping, and imperfections in the periodic structure.
The finite structures are treated by two examples: A 1-D-periodic structure that acts as a filter

and a 2-D-periodic structure that can be used to guide waves.

ARTICLE IN PRESS

Fig. 5. (a) The 6� 6 mass–spring unit cell (denoted type 2) modelling a heavy stiff resonator (center 2� 2 masses and

springs) in soft suspension (surrounding springs) connected to a surrounding matrix, and (b) the corresponding band

structure for wave propagation in the infinite periodic lattice. The inset shows a magnification of the band structure

from o ¼ 0–2 kHz with the band gap shown hatched.
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3.1. Model equations

A finite number of 1-D or 2-D unit cells are considered. The displacement vector uðtÞ ¼
fu1u2yuNtot

gT is introduced where Ntot is the total number of degrees of freedom in the model. In
1-D the vector takes the form: uðtÞ ¼ fu1yuNuNþ1yuMNg

T; where M is the number of unit cells.
In 2-D the vector is given as uðtÞ ¼ fu1;1v1;1yu1;MyNv1;MyNyuMxN;MyNvMxN;MyNg

T; where Mx and
My is the number of unit cells in the x and y directions, respectively.
The model equations that govern the small-amplitude displacement of the masses can now be

taken directly from Eq. (1) or (11)–(12) and written as

M.uþ C’uþ Ku ¼ feiOt; ð29Þ

where M and K is the assembled mass- and stiffness-matrices, respectively, C is an added viscous
damping matrix, and f is a vector of forces of frequency O:
A diagonal damping matrix is used to model the viscous damping with the components ci

expressed in terms of the actual to critical damping ratio zi from the relation

zi ¼
ci

2
ffiffiffiffiffiffiffiffiffi
mi

%ki

p ; ð30Þ

where mi is the mass corresponding to the ith dof and %ki is an equivalent stiffness defined as mio2
i ;

cf. Eq. (4) in 1-D and Eqs. (15) and (16) in 2-D.
With the time dependency of the displacement vector

uðtÞ ¼ aeiOt ð31Þ

inserted into Eq. (29), the linear set of equations to be solved for the amplitudes a is given as

ð�O2Mþ iOCþ KÞa ¼ f: ð32Þ

3.2. Example 1: a 1-D filter

An application for band gaps in a 1-D lattice is as pass- or stop-band filters. In theory, for an
infinite, and perfectly periodic lattice without damping, perfect filtering properties exist with
alternating pass bands and complete stop bands. The properties of finite lattice structures
subjected to periodic loading is here considered by analyzing the effect of the number of unit cells
in the structure, viscous damping, and imperfections in the periodic structure.
The unit cell considered in Section 2.1 with four masses and springs is used to describe the

periodic structure. As previously stated, this can be seen as a discrete model of a 0:15 m unit cell
consisting of 50% aluminum and 50% PMMA. In Section 2.1 it was shown that for the infinite
lattice this unit cell displays a band gap between approximately 5.2–12 kHz: Another band gap
appears above 13:5 kHz but the focus is here put on the response in the first gap.
Fig. 6a shows the model of the structure with M unit cells. The structure is subjected to a

periodic loading f cosOt at the left end. Fig. 6b shows the corresponding computational mass–
spring model with 10 unit cells ðM ¼ 10Þ and the four mass unit cell ðN ¼ 4Þ:
In the following sections, the filtering properties of this structure are analyzed for different

choice of system parameters. The response of the structure is typically given for the last mass in
the lattice and presented as frequency response functions (FRF) showing the acceleration of the
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mass for a reference force amplitude. The FRF curves are computed by solving the full set of
linear equations (32) for each frequency O:

3.2.1. The number of unit cells
An important parameter in the performance of the filter is of course the number of unit cells

used. If only a few unit cells are used the potential attenuation of the signal in the band gap
frequency range is lower than if more unit cells are used.
Fig. 7a displays the FRF for the last mass in the lattice structure when it is subjected to a

periodic loading of the first mass. Curves are shown for M ¼ 2; 5; 10; and for comparison the
band gap boundaries calculated for the infinite lattice are shown with vertical dashed lines.
For M ¼ 2 the band gap is detectable from the curve but the drop in response inside the band

gap is not much larger than the response drops between other resonance frequencies. With more
unit cells included the gap clearly appears—resonances are clustered outside the gap, the response
is reduced significantly inside the gap, and the steepness of curves increases at the band gap
boundaries. With even more unit cells included the steepness of the response curves near these
boundaries can, in principle, be as large as desired.
When M is large the computed band gap boundaries for the infinite lattice are seen to

correspond well with the band gap detectable from the FRF. However, a small discrepancy is
noted near the first gap OE5:3 kHz where resonance peaks appear just inside the gap boundary.
The resonance here is associated with a local eigenmode located near the boundary of the
structure where the boundary conditions are different.
This boundary effect is displayed in Fig. 7b. Here, the response of all masses in the structure is

shown for four frequencies. The short-dashed line for O ¼ 5:27 kHz corresponds to the boundary
mode frequency. The two curves for frequencies inside the band gap (i.e., O ¼ 5:27 and 6:00 kHz)
display an exponentially decreasing amplitude away from the point of excitation as predicted from
Eq. (10), but the boundary mode is seen as an increase in the response towards the end of the
structure. The curves for the two other frequencies outside the band gap correspond to excitation
of a low and a high vibration mode.

3.2.2. Viscous damping and imperfections

Fig. 8a shows FRF-curves for the considered structure with M ¼ 10 without damping and with
three different amounts of viscous damping characterized by the damping ratios z ¼ 0:1%; 1.0%,
and 5.0% added.
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M

Unit cell
f cos �t

f cos �t

(a)

(b)

Fig. 6. (a) Structure made of M unit cells with a periodic loading f cosOt acting in one end, and (b) the corresponding

computational mass–spring model with M ¼ 10 and the unit cell with 4 masses ðN ¼ 4Þ:
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For low values of damping the response resembles that of the undamped structure, except that
the peaks at resonance are reduced, i.e., a normal effect of added damping. In the band gap the
responses are hardly changed by small amounts of damping. Only with strong damping added
ðz ¼ 5%Þ is the response inside the gap affected.
Like with damping it can be expected that some imperfection in the periodic structure is

present. Fig. 8b shows the effect of adding some level of disorder to the perfect periodic structure.
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Fig. 7. (a) FRF-curves for the last mass in the lattice for different numbers of unit cells in the structure. Vertical dashed

lines indicate the band gap boundaries calculated for the infinite periodic structure, and (b) the response for all masses

for M ¼ 10 for four different frequencies.
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The imperfections are simulated by adding a random variation to each mass size. The variation is
indicated by a disorder percentage representing the maximum variation of the mass relative to its
nominal value.
Fig. 8b shows that the response is insensitive to the presence of small imperfections. Only if the

structure deviates significantly from the perfect periodic (20% disorder) is the response inside the
band gap noticeably changed by e.g., the presence of local resonances. But even with this high
level of imperfection the band gap is still clearly seen in the response.
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Fig. 8. (a) The influence on the response of the last mass of added viscous damping characterized by the actual to

critical damping ratio z of the individual masses, and (b) the influence of random disorder of the sizes of the individual

masses. For all curves M ¼ 10:
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3.3. Example 2: a 2-D waveguide

In Sections 2.2.1 and 2.2.2 it was shown how two different inhomogeneous unit cells have gaps
in the band structure for 2-D in-plane waves. In this section the vibrational response of periodic
structures with these two types of unit cells are analyzed when it is subjected to periodic loading.
The effects of the number of unit cells, viscous damping, and boundary effects are considered and
it is shown also how a structure with band gap unit cells can act as a wave guide.
Fig. 9a displays a model of the structure composed of a number of unit cells, Mx in one

direction and My in the other. A periodic loading f cosOt is applied centrally on the upper
boundary and the structure is simply supported at the two lower corners. Fig. 9b shows the
corresponding computational mass–spring model for Mx ¼ My ¼ 7 with type 1 unit cell.

3.3.1. Type 1 unit cells
Fig. 10 shows FRF-curves for the structure with type 1 unit cells (5� 5 masses corresponding

to a 0:02 m� 0:02 m epoxy matrix with a square aluminum inclusion). Indicated in the figure with
vertical dashed lines are the band gap boundaries for the infinite periodic lattice, as seen in Fig. 5.
Fig. 10a shows the response in the bottom of the structure (point A in Fig. 9a), and Fig. 10b on
the side of the structure (point B). For Mx ¼ My ¼ 3 the band gap is not clearly detectable from
the response, with e.g., several resonance peaks appearing inside the band gap boundaries. With
more unit cells the response clearly drops inside the gap. However for all curves resonance peaks
and a high response are seen from OE55 kHz and up to the upper boundary frequency. These
resonance peaks are associated with local resonances for the boundary elements, as in the 1-D
case.
Fig. 11 shows contour plots of the response in the structure for two frequencies. The res-

ponse in Fig. 11a is calculated for O ¼ 52:1 kHz; corresponding to a point in the middle of the
band gap and shows clearly how the response is localized near the point of excitation. For
O ¼ 54:8 kHz a high response is seen to be localized near the boundary of the structure. This
frequency is inside the band gap range but appears as waves can still propagate along the
boundary elements.

3.3.2. Type 2 unit cells
The type 2 unit cell also displays a band gap, but in a lower frequency range than type 1 unit

cell. This unit cell corresponds to a 0:02 m� 0:02 m epoxy matrix with a copper inclusion in a soft
suspension of silicon rubber.
Fig. 12 shows the FRF-curves and the corresponding band gap frequency range in points A and

B. As expected, the response drops inside the band gap, but a significant reduction is seen only
very locally near the lower band gap frequency boundary, i.e. the local resonance frequency of the
inclusions.
A contour plot of the response for O ¼ 1:34 kHz is shown in Fig. 13a, the frequency where the

response drops to a minimum. The vibrations are seen to be localized near the point of excitation
with the inclusions vibrating with a higher amplitude than the surrounding masses throughout the
whole structure.
Fig. 13b shows the response for O ¼ 1:90 kHz; i.e., slightly above the upper band gap

frequency. Here, the response is seen to be nearly constant over most of the domain except near
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the supports. This corresponds well to the motion predicted by Eq. (28), where the inclusions and
the matrix material are predicted to move essentially rigidly in anti-phase with nearly identical
amplitudes.
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Fig. 9. (a) The structure with Mx � My unit cells with a periodic loading f cosOt acting centrally at the top boundary

and simple supports at the bottom corners, and (b) the corresponding computational model for Mx ¼ My ¼ 7 and type

1 unit cells.
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3.3.3. Viscous damping
Fig. 14a shows the effect of adding damping to the structure with Mx ¼ My ¼ 21 and type 1

unit cells. The undamped FRF curve is shown for comparison together with curves for damping
ratios of z ¼ 0:1% and 1.0%. Fig. 14b shows the corresponding curves with type 2 unit cells.
Clearly, with type 1 unit cells the band gap is still noticeable with damping present, even when

the damping is so strong that all resonance peaks have nearly disappeared from the response.
However, with type 2 unit cells in the structure the band gap practically disappears for strong
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Fig. 10. The structural response with Mx � My type 1 unit cells included in the structure, (a) shows the response in

point A and (b) in point B.
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Fig. 11. (a) Contour plot of the structural response (in dB) for O ¼ 52:1 kHz; and (b) for O ¼ 54:8 kHz: Type 1 unit

cells with Mx ¼ My ¼ 21:
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damping, and although for z ¼ 0:1% a drop in the response is noticed near the gap it is hardly
distinguishable from other response drops between resonances.

3.3.4. Wave guides
It has been demonstrated how structures assembled from unit cells with band gaps may exhibit

a large reduction in the structural response away from the point of excitation when subjected to
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Fig. 12. The structural response with Mx � My type 2 unit cells included in the structure, (a) shows the response in

point A and (b) in point B.
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Fig. 13. (a) Contour plot of the structural response (in dB) for O ¼ 1:34 kHz; and (b) for O ¼ 1:90 kHz: Type 2 unit

cells with Mx ¼ My ¼ 21:
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periodic loading at certain frequency ranges. By introducing defects in the periodicity this effect
can now be utilized to construct wave guides.
Type 1 unit cells are used in the following with Mx ¼ My ¼ 21: The defect is introduced by

removing the inclusions from the unit cells in a path from the point of excitation in either a
straight path to the bottom of the structure (point A) or in a 901 bent path to the side of the
structure (point B).
Fig. 15a shows the response with a straight path of defects through the structure. It is seen that

as for the perfect periodic structure the response in point B drops significantly in the band gap,
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Fig. 14. The influence on the response of added viscous damping characterized by the actual to critical damping ratio z
of the individual masses, (a) for type 1 unit cells, and (b) type 2 unit cells. In both figures Mx ¼ My ¼ 21:
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whereas in point A the response remains high indicating that the signal is now confined to the
path. Fig. 15b shows the response for the bent path leading to point B. The response is now seen
to be normalized in B inside the band gap, whereas in point A the response drops.
Contour plots of the response for the two lattice structures with paths are shown in Figs. 16a

and b, respectively. The frequency of excitation for both figures is O ¼ 52:1 kHz; i.e., inside the
band gap. The figure shows how the paths of defects in the periodic structures effectively isolates
the vibrations to the path regions and thus ‘‘leads’’ the vibrations to the structural point A or B,
whereas away from the paths the response drops rapidly with distance.
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Fig. 15. The response in points A and B with a path of defects in the periodic structure for a the structure, (a) for

vertical path, and (b) for a corner path. The insets show schematics of the paths. Type 1 unit cells with Mx ¼ My ¼ 21:
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Fig. 16. Contour plot of the response for O ¼ 52:1 kHz; (a) for a vertical path of defects, and (b) for a corner path of

defects. Type 1 unit cells with Mx ¼ My ¼ 21:
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4. Conclusions

In order to use phononic band gap materials in mechanical structures that utilize the selective
wave blocking abilities of these materials, the effects associated with the boundaries, damping,
and imperfections need to be taken into account.
In this work the vibrational response of 1-D and 2-D mass–spring structures subjected to

periodic loading has been investigated. The focus has been put on analyzing structures with a
periodic micro-structure (unit cells) with gaps in the band structure for the corresponding infinite
periodic lattice. Two examples were used to demonstrate the effect on the response of boundaries,
viscous damping, and imperfections—a 1-D structure acting as a wave filter, and wave guiding in
2-D structures.
It was shown how the response in the band gap frequency range depends on the number of unit

cells in the structure. In 1-D and for one of the two types of unit cells analyzed in 2-D, it was seen
how the response in the band gap is insensitive to moderate amounts of viscous damping, whereas
for the other 2-D unit cell analyzed, the band gap effect almost disappears with strong damping
added. In the 1-D example it was shown also that the response in the band gap is insensitive to
small imperfections in the periodic structure. It was demonstrated in both the 1-D and 2-D
example, that the free boundaries cause local resonances that affect the response in the band gap.
Two 2-D wave guides were analyzed, created by replacing the periodic structure with a
homogeneous structure in a straight and a 901 bent path. It was shown how the vibrational
response is confined to these paths in the band gap frequency ranges.
Further work deals with the formulation and solution of optimization problems that can be

used to design of applications of phononic band gap materials and structures.
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